(1)

Def: (a) $H_{0} \in \eta_{\mathbb{R}}$ is called regular if $\quad \alpha\left(H_{0}\right) \neq 0 \quad \forall \alpha \in \Delta$
(b) $\alpha \leqslant \beta$ if $\alpha\left(H_{0}\right) \leqslant \beta\left(H_{0}\right) \sim$ only partial ordering.
(c) $A^{+}:=\left\{\alpha \in \Delta \mid \alpha\left(H_{0}\right)>0\right\}$ pick $H_{0} \&$ Fixed. either $\alpha\left(H_{0}\right)>0$ or $\alpha\left(H_{0}\right)<0$
(d) $\alpha \in \Delta^{+}$is called simple/fundamental $\alpha \neq \beta+\gamma$ with $\beta, \gamma \in \Delta^{+}$
(e) $F:=\left\{\alpha \in \Delta^{+}, \alpha\right.$ simple $\}$ is the set of simple/fuots It is called a base in Serve.
(f)

Carton matrix $\quad\left(n_{\beta \alpha}\right) \quad \alpha, \beta \in F \quad n_{\alpha \alpha}=2 . \quad\binom{n_{\alpha \beta} \leqslant 0}{$ if $\alpha \neq \beta}$.
(g) Dynkin diagram: Given $\left\{\alpha_{i}\right\}=F$.

Its Dynkin diagram is constructed as
(i) draw a circle 0 for α_{i} each
(ii) connect $\alpha_{i} \alpha_{j}$ if $n_{i j} \neq 0$ graph by $\quad n_{j-\cdots n_{i j}}^{n_{j}} \in\left\{\begin{array}{l}1 \\ \frac{1}{2} \\ \hline\end{array}\right.$
(iii) If $n_{i j} \cdot n_{j:}>1$, mark the circle with the number to indicate the ratio of the relative length.
(Humphreys: \Longrightarrow to indicate the shorter one)
without (iii) it is called a copter graph.
Main theorem: [Which we shall NOT prove]
Theorem: (c) g is simple iff $D(g)$ is connected.
Killer Prop 4.19 Also see Humphreys 10.4.

Needs some results on reflections.
(b) $D(g)$ is independent of the choice of η \& ordering
(c) $g_{1} \approx g_{2}$ ifs $D\left(g_{1}\right)=D\left(g_{2}\right)$
$\left\{\begin{array}{l}\text { K namely } H_{0}\end{array}\right.$
(d) Every one of the q possibilities arises from a simple lie algebra.

First, the partial ordering v in a regular element $H_{0} \in \eta_{\mathbb{R}}$ will provide a way to pick a
(base) via F
in Serve \& Humphreys

Lemma (ف) $B\left(\alpha_{i}, \alpha_{j}\right) \leqslant 0 \quad \forall \alpha_{i}, \alpha_{j} \in F \quad \alpha_{i} \neq \alpha_{j}$
(b) F is linearly ind p.
(c) $\forall \alpha \in \Delta^{+}$then $\alpha=\sum n_{j} \alpha_{j} \quad \alpha_{j} \in F \quad \& \quad n_{j}^{\prime} \geqslant 0$

In particular F provides a basis for Δ. [$\left[\frac{\text { Serve called a base }}{\text { Humphreys }}\right]$

$$
\Rightarrow E_{i} \operatorname{th}_{2} \alpha_{i-\beta}-\alpha_{j} \in \Delta^{+} \text {or } \alpha_{j}-\alpha_{i} \in \Delta^{+\Delta}
$$

Then $\alpha_{j}=\alpha_{i}+\left(\alpha_{j}-\alpha_{i}\right) \quad \Rightarrow$ one of then $\left(\alpha_{i}, \alpha_{j}\right)$

$$
\text { or } \alpha_{i}=\alpha_{j}+\left(\alpha_{i}-\alpha_{j}\right)
$$ is NOT single

linearly dependent
(b) If $\Rightarrow \sum p_{i} \alpha_{i}-\sum q_{j} \alpha_{j}=0 \quad$ collecting. $P_{i}>0, \quad g_{j}>0$

$$
\left\{\begin{aligned}
& \Rightarrow \sum p_{i} \alpha_{i}=\sum q_{j} \alpha_{j} \alpha_{i} \neq \alpha_{j} \\
& \begin{cases}B\left(\sum p_{i} \alpha_{i}, \sum q_{j} \alpha_{j}\right) \geqslant 0 & \Rightarrow \quad \sum p_{i} \cdot \alpha_{i}=\sum q_{j} \alpha_{j}=0 \\
B_{\text {ut }} \| \sum p_{i} q_{j} \underbrace{}_{\leqslant 0} B\left(\alpha_{i} \alpha_{j}\right) & \& \begin{array}{c}
B\left(\sum p_{i} \alpha_{i}\right. \\
\left.\Rightarrow \sum_{i,} \alpha_{i}\right)=0 \\
\end{array} \quad B\left(\alpha_{i}, \alpha_{j}\right)=0\end{cases}
\end{aligned}\right.
$$

But $v=\left\langle\sum \sum_{\substack{11 \\ 0}}^{p_{i}, \alpha_{i}}, H_{0}\right\rangle=\sum_{\substack{y \\ 0}}^{p_{i} \alpha_{i}\left(H_{0}\right)} \Rightarrow A$ contradiction

For (C), We argue by contradiction. If $S:=\left\{\alpha \in \Delta_{+}\right.$(α can not be written as $\left.\sum n_{i} \alpha_{i} \quad n_{i} \in \mathbb{Z}_{+} \& \alpha_{i} \in E\right\}$

Thenpick $\alpha \in S$ such that $\quad \alpha\left(H_{0}\right)$ is the smallest.
Since α is Not in $F \Rightarrow \quad \alpha=\beta_{1}+\beta_{2} \quad \beta_{i} \in \Delta^{+}$
But $\alpha\left(H_{0}\right)=\underset{\substack{\beta_{1} \\>H_{0}}}{\left(H_{0}\right)+\underset{\lambda_{0}}{\beta_{2}\left(H_{0}\right)}} \Rightarrow\left(\beta_{i}\left(H_{0}\right)<\alpha\left(H_{0}\right)\right.$
Then $\beta_{i}=\sum n_{k}^{i} \alpha_{k}^{\prime} \quad \lambda_{0} \quad n_{k} \in \mathbb{Z}_{t} \quad \& \alpha_{k} \in F$
This proves that $\left.\alpha=\sum n_{k}^{1} \alpha_{k}^{1}+n_{k}^{2} \alpha_{k}^{2} \Rightarrow \Leftrightarrow \Leftrightarrow\right)$
(2)

Table: Page 63 of ziller (Table 4.13). $\quad n_{\beta \alpha}=2 \frac{2 B(\beta, \alpha)}{B(\beta . \beta)}$

$\frac{\cos \varphi=\frac{\varepsilon}{2} \sqrt{r} \quad \frac{|\alpha|^{2}}{|\alpha|^{2}}=r,}{\text { (an not have string longer than } 4}$

$$
\begin{aligned}
\beta, \beta+\alpha & \beta+2 \alpha & \beta+3 \alpha & \beta+4 \alpha \\
\beta_{-2 \alpha}^{\prime} \beta^{\prime}-\alpha & \beta^{\prime \prime} & \Rightarrow \beta^{\prime}+\alpha & \beta^{\prime}+2 \alpha
\end{aligned} \quad 4 \leq\left|n_{\alpha \beta} \cdot n^{n} \alpha\right|=4 \cos ^{2} \gamma\left(H_{\alpha}+H_{\beta}\right)
$$

Then

$$
\begin{aligned}
& n_{\alpha \beta}=(p-\varepsilon)=-4 \\
& n_{\beta \alpha}=\text { integer } \neq 0
\end{aligned}
$$

$$
\Rightarrow \quad H_{\alpha} \quad / / H_{\beta}
$$

Namely $\beta= \pm \alpha \Rightarrow(\vec{\epsilon})$.

This implies a classification of the Dyskin diagram.
Coxeter graph: the graph with out (iii) marking.
Theorem. if Δ is irreducible of rank. then its Dyking diagram is one of following
$A_{l} \quad(l \geqslant 1)$

Bl $\quad(l \geq 2)$

Ce $(l \geq 3)$
$D_{\ell} \quad(l \geqslant 4)$
E_{6}
E_{7}
E_{f}
F_{4}
G_{2}

The Lie algebra lists of last lecture is clue to this classification theorem.
At least the labeling are from the above.
The rest is to check. (i) A, B, C, D, can be realized by the four classical Lie algebras. - done directly.
(ii) Identify \& Construct the simple exceptional Lie algebras \& the Compact exceptional Lie groups. (correspondin gt $\left.\begin{array}{c}E, F, G \text { Gyre }\end{array}\right)$
(3) The proof of the classification result. (We focus on the coxetergraph) We divide it into the following 10 steps. (As in Humphreys) For the step $10{ }_{p-1} \quad \varepsilon=\sum_{i=1}^{p-1} i \varepsilon_{i}$

$$
\begin{aligned}
& \|\varepsilon\|^{2}=\sum_{i=1}^{p-1} i^{2}-\sum_{i=1}^{p-2} i^{(i+1)}{ }^{i=1}=(P-1)^{2}-\frac{(P-1)\left(P_{-2}\right)}{2}=\frac{(P-1)}{2}[2 P-2-P+2]=\frac{P\left(P_{1}\right)}{2} \\
& \|\xi\|^{2}=\frac{r(r-1)}{2},\|\xi\|^{2}=\frac{\underline{q}(-1)}{2} \\
& \left.\left.\left\{\varepsilon_{i}\right\}, \varepsilon, \perp\{ \}_{i}\right\},\right\} \propto \perp\left\{\eta_{i}\right\}, \eta \text {. } \\
& \frac{(\psi \varepsilon)^{2}}{\|\psi\|^{2}\|\varepsilon\| \|^{2}}=\frac{(p-1)^{2}}{\frac{(p-1 p}{2}}(\underbrace{\psi, \varepsilon_{n}}_{\| \frac{1}{4}})^{2}=\frac{2}{4}\left(1-\frac{1}{p}\right)=\frac{1}{2}\left(1-\frac{1}{p}\right) \\
& \frac{1}{2}\left(1-\frac{1}{p}\right)+\frac{1}{2}\left(1-\frac{1}{2}\right)+\frac{1}{2}\left(1-\frac{1}{r}\right)<1 \Leftrightarrow \frac{1}{p}+\frac{1}{2}+\frac{1}{r}>1 \text {. }
\end{aligned}
$$

This limits the possibility subtantially.

$E_{7}:$

E_{8} :

F_{4} :

G_{2} :

The restrictions on ℓ for types $A_{\ell}-D_{\ell}$ are imposed in order to avoid duplication. Relative to the indicated numbering of simple roots, the corresponding Cartan matrices are given in Table 1. Inspection of the diagrams listed above reveals that in all cases except $\mathrm{B}_{\ell}, \mathrm{C}_{\ell}$, the Dynkin diagram can be deduced from the Coxeter graph. However, B_{ℓ} and C_{ℓ} both come from a single Coxeter graph, and differ in the relative numbers of short and long simple roots. (These root systems are actually dual to each other, cf. Exercise 5.)

Proof of Theorem. The idea of the proof is to classify first the possible Coxeter graphs (ignoring relative lengths of roots), then see what Dynkin diagrams result. Therefore, we shall merely apply some elementary euclidean geometry to finite sets of vectors whose pairwise angles are those prescribed by the Coxeter graph. Since we are ignoring lengths, it is easier to work for the time being with sets of unit vectors. For maximum flexibility, we make

Table 1. Cartan matrices
$A_{l}:\left(\begin{array}{rrrrrlllll}2 & -1 & 0 & & & . & . & . & & 0 \\ -1 & 2 & -1 & 0 & & . & . & . & & 0 \\ 0 & -1 & 2 & -1 & 0 & . & . & . & & 0 \\ 0 & 0 & 0 & 0 & & . & . & . & -1 & \dot{2}\end{array}\right)$
$\mathbf{B}_{\ell}:\left(\begin{array}{rrrrlllllr}\mathbf{2} & -1 & 0 & & . & . & . & & & 0 \\ -1 & \mathbf{2} & -1 & 0 & . & . & . & & & \mathbf{0} \\ . & . & . & . & . & . & . & -i & . & -\dot{2} \\ 0 & 0 & 0 & & . & . & . & -1 & -1 \\ 0 & 0 & 0 & & . & . & . & 0 & -1 & 2\end{array}\right)$
$\mathrm{C}_{\ell}:\left(\begin{array}{rrrrlllllr}\mathbf{2} & -1 & 0 & & . & . & . & & & 0 \\ -1 & 2 & -1 & & . & . & . & & & 0 \\ 0 & -1 & \mathbf{2} & -1 & . & . & . & & & 0 \\ 0 & . & . & . & . & . & . & -1 & . & -\dot{2} \\ 0 & 0 & 0 & & . & . & . & -1 & -1 \\ 0 & 0 & & & . & . & . & 0 & -2 & 2\end{array}\right)$
$\mathrm{D}_{\ell}:\left(\begin{array}{rrrlllllll}\mathbf{2} & -1 & 0 & & . & . & . & & & 0 \\ -1 & 2 & -1 & & . & . & . & & & 0 \\ 0 & 0 & . & . & . & . & . & . & . & . \\ 0 & 0 & & . & . & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & & . & . & & -1 & 2 & -1 & -1 \\ 0 & 0 & & . & . & & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 2\end{array}\right)$
$\mathrm{E}_{6}:\left(\begin{array}{rrrrrr}2 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2\end{array}\right)$
$\mathrm{E}_{7}:\left(\begin{array}{rrrrrrr}2 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2\end{array}\right)$
$\mathbf{E}_{\mathbf{8}}:\left(\begin{array}{rrrrrrrr}2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2\end{array}\right)$
$F_{4}:\left(\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & -2 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right) \quad G_{2}:\left(\begin{array}{rr}2 & -1 \\ -3 & 2\end{array}\right)$
only the following assumptions: E is a euclidean space (of arbitrary dimen-
$\frac{\alpha_{i}}{\left|\alpha_{i}\right|}$ vectors is called (for brevity) admissible. (Example: Elements of a base for a root system, each divided by its length.) We attach a graph Γ to the set \mathfrak{A} just as we did above to the simple roots in a root system, with vertices i and j $(i \neq j)$ joined by $4\left(\varepsilon_{i}, \varepsilon_{j}\right)^{2}$ edges. Now our task is to determine all the connected graphs associated with admissible sets of vectors (these include all connected Coxeter graphs). This we do in steps, the first of which is obvious. (Γ is not assumed to be connected until later on.)
(1) If some of the ε_{i} are discarded, the remaining ones still form an admissible set, whose graph is obtained from Γ by omitting the corresponding vertices and all incident edges.
(2) The number of pairs of vertices in Γ connected by at least one edge is strictly less than n. Set $\varepsilon=\sum_{i=1}^{n} \varepsilon_{i}$. Since the ε_{i} are linearly independent, $\varepsilon \neq 0$. So $0<(\varepsilon, \varepsilon)=n+2 \sum_{i<j}\left(\varepsilon_{i}, \varepsilon_{j}\right)$. Let i, j be a pair of (distinct) indices for which $\left(\varepsilon_{i}, \varepsilon_{j}\right) \neq 0$ (i.e., let vertices i and j be joined). Then $4\left(\varepsilon_{i}, \varepsilon_{j}\right)^{2}=1,2$, or 3 , so in particular $2\left(\varepsilon_{i}, \varepsilon_{j}\right) \leq-1$. In view of the above inequality, the number of such pairs cannot exceed $n-1$.
(3) Γ contains no cycles. A cycle would be the graph Γ^{\prime} of an admissible subset \mathfrak{H}^{\prime} of \mathfrak{A} (cf. (1)), and then Γ^{\prime} would violate (2), with n replaced by Card \mathfrak{H}^{\prime}.
(4) No more than three edges can originate at a given vertex of Γ. Say $\varepsilon \in \mathfrak{A}$, and $\eta_{1}, \ldots, \eta_{k}$ are the vectors in \mathfrak{A} connected to ε (by 1,2 , or 3 edges each), i.e., $\left(\varepsilon, \eta_{i}\right)<0$ with $\varepsilon, \eta_{1}, \ldots, \eta_{k}$ all distinct. In view of (3), no two η 's can be connected, so $\left(\eta_{i}, \eta_{j}\right)=0$ for $i \neq j$. Because \mathfrak{A} is linearly independent, some unit vector η_{0} in the span of $\varepsilon, \eta_{1}, \ldots, \eta_{k}$ is orthogonal to $\eta_{1}, \ldots, \eta_{k}$; clearly $\left(\varepsilon, \eta_{0}\right) \neq 0$ for such η_{0}. Now $\varepsilon=\sum_{i=0}^{k}\left(\varepsilon, \eta_{i}\right) \eta_{i}$, so $1=(\varepsilon, \varepsilon)=\sum_{i=0}^{k}\left(\varepsilon, \eta_{i}\right)^{2}$. This forces $\sum_{i=1}^{k}\left(\varepsilon, \eta_{i}\right)^{2}<1$, or $\sum_{i=1}^{k} 4\left(\varepsilon, \eta_{i}\right)^{2}<4$. But $4\left(\varepsilon, \eta_{i}\right)^{2}$ is the number of edges joining ε to η_{i} in Γ.
(5) The only connected graph Γ of an admissible set \mathfrak{H} which can contain a triple edge is \rightleftharpoons (the Coxeter graph G_{2}). This follows at once from (4).
(6) Let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\} \subset \mathfrak{A}$ have subgraph $\bigcirc \longrightarrow \cdots \cdots \circ$ (a simple chain in Γ. If $\mathfrak{A}^{\prime}=\left(\mathfrak{A}-\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}\right) \cup\{\varepsilon\}, \varepsilon=\sum_{i=1}^{k} \varepsilon_{i}$, then \mathfrak{A}^{\prime} is admissible. (The graph of \mathfrak{A}^{\prime} is obtained from Γ by shrinking the simple chain to a point.) Linear independence of \mathfrak{A}^{\prime} is obvious. By hypothesis, $2\left(\varepsilon_{i}, \varepsilon_{i+1}\right)=$ $-1(1 \leq i \leq k-1)$, so $(\varepsilon, \varepsilon)=k+2 \sum_{i<j}\left(\varepsilon_{i}, \varepsilon_{j}\right)=k-(k-1)=1$. So ε is a unit vector. Any $\eta \in \mathfrak{A}-\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}$ can be connected to at most one of $\varepsilon_{1}, \ldots, \varepsilon_{k}$ (by (3)), so $(\eta, \varepsilon)=0$ or else $(\eta, \varepsilon)=\left(\eta, \varepsilon_{i}\right)$ for $1 \leq i \leq k$. In either case, $4(\eta, \varepsilon)^{2}=0,1,2$, or 3 .

$$
2\left(\varepsilon_{1} \varepsilon_{2}\right)+2\left(\varepsilon_{2} \varepsilon_{3}\right)+\cdots
$$

(7) Γ contains no subgraph of the form:

Suppose one of these graphs occurred in Γ; by (1) it would be the graph of an admissible set. But (6) allows us to replace the simple chain in each case by a single vertex, yielding (respectively) the following graphs which violate (4):

(8) Any connected graph Γ of an admissible set has one of the following forms:

Indeed, only \Longrightarrow contains a triple edge, by (5). A connected graph containing more than one double edge would contain a subgraph

which (7) forbids, so at most one double edge occurs. Moreover, if Γ has a double edge, it cannot also have a "node" (branch point)

(again by (7)), so the second graph pictured is the only possibility (cycles being forbidden by (3)). Finally, let Γ have only single edges; if Γ has no node, it must be a simple chain (again because no cycles are allowed). It cannot contain more than one node (7), so the fourth graph is the only remaining possibility.
(9) The only connected Γ of the second type in (8) is the Coxeter graph F_{4} $\bigcirc \longrightarrow$ or the Coxeter graph $\mathrm{B}_{n}\left(=\mathrm{C}_{n}\right) \bigcirc \longrightarrow \cdots$ $0-\longrightarrow$.
Set $\varepsilon=\sum_{i=1}^{p} i \varepsilon_{i}, \eta=\sum_{i=1}^{q} i \eta_{i}$. By hypothesis, $\underbrace{2\left(\varepsilon_{i}, \varepsilon_{i+1}\right)=-1=2\left(\eta_{i}, \eta_{i+1}\right)}$, and other pairs are orthogonal, so $(\varepsilon, \varepsilon)=\sum_{i=1}^{p} i^{2}-\sum_{i=1}^{p-1} i(i+1)=p(p+1) / 2,(\eta, \eta)$

$$
\begin{aligned}
& =p^{2}-\frac{p(p-1)}{2} \\
& =\frac{p}{2}[2 p-(p-1)]
\end{aligned}
$$

$=q(q+1) / 2$. Since $4\left(\varepsilon_{p}, \eta_{q}\right)^{2}=2$, we also have $(\varepsilon, \eta)^{2}=p^{2} q^{2}\left(\varepsilon_{p}, \eta_{q}\right)^{2}=$ $p^{2} q^{2} / 2$. The Schwartz inequality implies (since ε, η are obviously independent) that $(\varepsilon, \eta)^{2}<(\varepsilon, \varepsilon)(\eta, \eta)$, or $p^{2} q^{2} / 2<p(p+1) q(q+1) / 4$, whence $(p-1)(q-1)$ <2. The possibilities are: $p=q=2$ (whence F_{4}) or $p=1$ (q arbitrary), $q=1(p$ arbitrary $)$. $p q<p+q+1$ $\bigcirc \cdots$ or one Coxeter graph $\mathrm{E}_{n}(n=6,7$ or 8$)$ $0 \longrightarrow \quad 0$. Set $\varepsilon=\Sigma i \varepsilon_{i}, \quad \eta=\Sigma i \eta_{i}, \zeta=\Sigma i \zeta_{i}$. It is clear that ε, η, ζ are mutually orthogonal, linearly independent vectors, and that ψ is not in their span. As in the proof of (4) we therefore obtain $\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}<1$, where $\theta_{1}, \theta_{2}, \theta_{3}$ are the respective angles between ψ and ε, η, ζ. The same calculation as in (9), with $p-1$ in place of p, shows that $(\varepsilon, \varepsilon)=p(p-1) / 2$, and similarly for η, ζ. Therefore $\cos ^{2} \theta_{1}=$ $(\varepsilon, \psi)^{2} /(\varepsilon, \varepsilon)(\psi, \psi)=(p-1)^{2}\left(\varepsilon_{p-1}, \psi\right)^{2} /(\varepsilon, \varepsilon)=\frac{1}{4}\left(2(p-1)^{2} / p(p-1)\right)=$ $(p-1) / 2 p=\frac{1}{2}(1-1 / p)$. Similarly for θ_{2}, θ_{3}. Adding, we get the inequality $\frac{1}{2}(1-1 / p+1-1 / q+1-1 / r)<1$, or $\left(^{*}\right) 1 / p+1 / q+1 / r>1$. (This inequality, by the way, has a long mathematical history.) By changing labels we may assume that $1 / p \leq 1 / q \leq 1 / r(\leq 1 / 2$; if p, q, or r equals 1 , we are back in type A_{n}). In particular, the inequality (${ }^{*}$) implies $3 / 2 \geq 3 / r>1$, so $r=2$. Then $1 / p+1 / q>1 / 2,2 / q>1 / 2$, and $2 \leq q<4$. If $q=3$, then $1 / p>1 / 6$ and necessarily $p<6$. So the possible triples (p, q, r) turn out to be: $(p, 2,2)$ $=\mathrm{D}_{n} ;(3,3,2)=\mathrm{E}_{6} ;(4,3,2)=\mathrm{E}_{7} ;(5,3,2)=\mathrm{E}_{8}$.

The preceding argument shows that the connected graphs of admissible sets of vectors in euclidean space are all to be found among the Coxeter graphs of types A-G. In particular, the Coxeter graph of a root system must be of one of these types. But in all cases except $\mathrm{B}_{\ell}, \mathrm{C}_{\ell}$, the Coxeter graph

Not many choice

